

Sewer Bypasses and Overflows

Date: November 2, 2022

Presenter: Kyle Chambers, P. Eng.

Division Manager, Sewer Engineering

Definitions

Overflows:

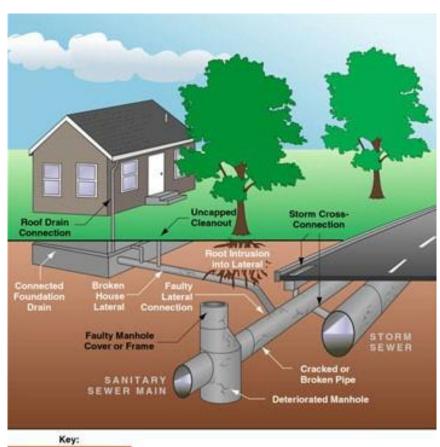
- release of untreated wastewater to the environment.
- can occur in our sewer collection system, at pump stations, or treatment facilities.

Bypasses:

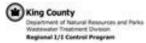
 diversion of wastewater around part of the wastewater treatment process most often within a wastewater treatment plant.

What Causes Overflows/Bypasses?

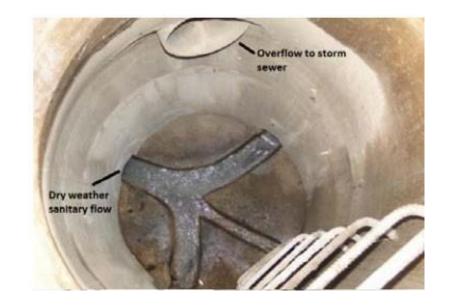
Most common cause: stormwater entering the sanitary sewer system, increasing flows beyond capacity. Otherwise known as 'Inflow & Infiltration'.


Inflow: stormwater flow into sanitary sewer via direct connection (e.g. combined sewers, weeping tile connection).

Infiltration: stormwater or groundwater into sanitary sewer via indirect connection (e.g. cracks in pipe).


This is 'unwanted' water in our sanitary sewer system.

Inflow and Infiltration



What Are We Doing?

- Because there are multiple sources of this unwanted water, multiple approaches are needed.
- Many of the plans and initiatives are interconnected

Pollution Prevention Control Plan (PPCP)

- Multi-year master planning project to provide long-term solutions to address conveyance system sewer overflows and bypasses
- Identifies highest priority overflow points for management based on frequency and volume of overflows
- Recommendations of the PPCP include considerations for climate change, data management, capital works, and removal of inflow and infiltration at the source.
- 2023 PPCP Update: currently in process to engage consultant to undertake master planning update report

Domestic Action Plan – Combined Sewer Separation

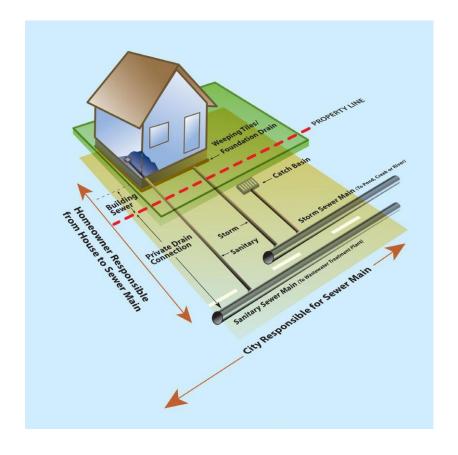
- Highlights projects completed that reduce discharge of phosphorous to the Thames; includes replacement of combined sewers and managing the highest priority overflows as identified in PPCP
- Original DAP goal was to separate 80%, or 17km (from 2008 quantity of 21.25km) of the combined sewer system by 2025; however, that relied on senior level government funding which did not materialize.
- City remains committed to combined sewer separation.

Combined Sewer Separation – Past 5 Years

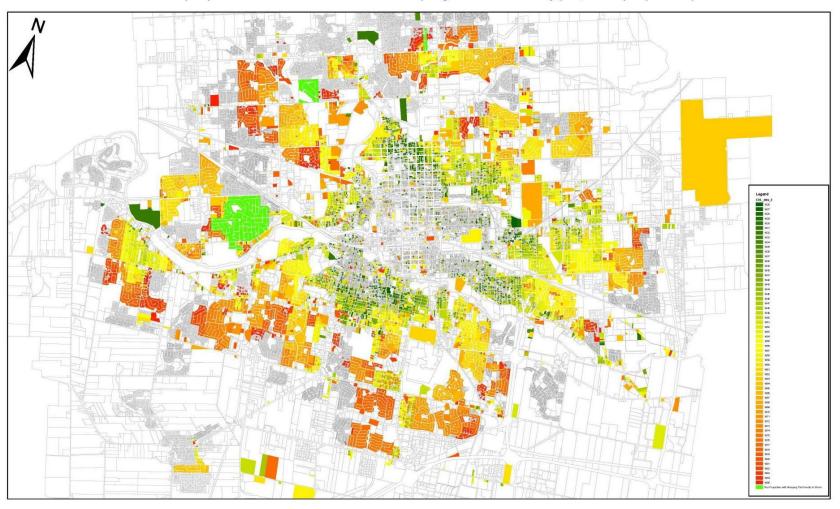
Year	Length Removed	Total Combined Sewer Remaining
2018	1,022m	16.5km
2019	600m	15.9km
2020	303m	15.6km
2021	1,428m	14.2km
2022	904m	13.3km

Over past 5 years, over 4.25km of combined sewer have been removed and replaced with new separated sanitary and storm sewers.

Combined Sewers


13.3km remaining (end 2022)

Inflow Source: Weeping Tiles


- Weeping tiles were commonly connected to sanitary sewer between the 1920s and 1980s
- That makes these sanitary sewers "partially combined" as the weeping tiles are a point of inflow
- Leading cause of basement flooding
- Approximately 50,000 weeping tile connections

Weeping Tile to Sanitary

Residential Properties Built Between 1926 and 1985 ie. properties assummed to have weeping tiles to sanitary(47,000+ properties)

Weeping Tile Disconnection

Basement Flooding Grant Program

Subsidy of 90% of costs to separate weeping tiles from the sanitary sewer and install sump pumps and backflow valves

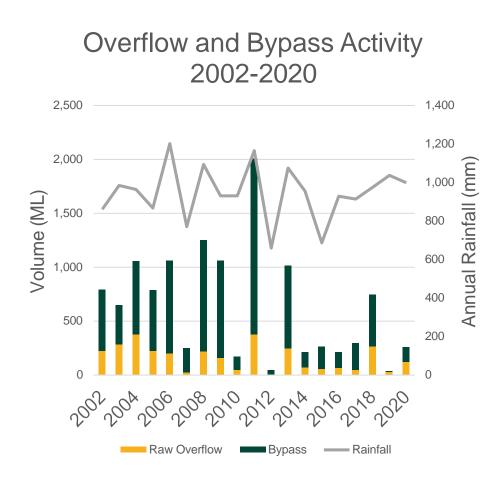
Applied for by individual homeowners

60 -80 grants approved each year

Targeted weeping tile disconnection program

City initiated projects to target neighbourhoods for overall system benefit.

Historical Bypasses and Overflows


Raw overflow volume < 0.17% of total wastewater treated

2018 stands out

Multiple intense rain events with snow melt

75% of raw bypass before end of February

Greenway upgrade not complete

Wastewater Treatment Master Plan

- Wastewater Treatment Master Plan completed in February 2022
- Strategy for collection and treatment of wastewater in London over the next 50 years
- Provide long term plan for wastewater infrastructure including treatment plants and pumping stations
- Minimizing bypasses and overflows at these facilities will be a key consideration

Recent Work

- Greenway Expansion
 - \$40M to increase treatment capacity, add wet weather treatment and storage capacity
- Dingman Creek PS
 - \$25M project to increase capacity in southeast London and increase ability to partially treat extreme flow events (2022)
- Adelaide WWTP Upgrades
 - Project to recover treatment capacity and construct wet weather storage tanks (2022)
- Pottersburg-Vauxhall System Optimization
 - Interconnection forcemain (2020) to allow full use of available treatment capacity
 - Wet weather treatment and storage facility (2022)
- Flood Protection at Greenway and Adelaide WWTP
 - \$49M project to protect WWTPs from floods and enable full treatment to occur up to 100 year flood elevation (complete by 2025)

Conclusions

- Unwanted water has many sources of inflow and infiltration into the sanitary sewer system.
- Major source of inflow from residential weeping tile connections to sanitary lateral.
- Multi-faceted approach required to address the various sources.
- Ultimate goal is to protect properties from basement flooding and our environment from overflows and bypasses.

Questions?

