4TH REPORT OF THE

ADVISORY COMMITTEE ON THE ENVIRONMENT

Meeting held on November 7, 2012, commencing at 12:21 p.m.

PRESENT: M. Baetens, (Chair), C. Baird, M. Bloxam, R. Gupta, J. Howell, T. Khan, L. Langdon, G. Sass, J. Shelley, D. Szoller, A. Youssef and J. Martin (Secretary).

ALSO PRESENT: T. Copeland, S. Galloway, J. Pitman, A. Van Rossum, R. Welker

REGRETS: M. Daignault

I YOUR COMMITTEE RECOMMENDS:

Thames River/Creek Survey Annual Report 1. That Civic Administration **BE REQUESTED** to provide the Thames River/Creek Survey Annual Report to the Advisory Committee on the Environment (ACE); it being noted the ACE received the <u>attached</u> presentation from A. Van Rossum, Environmental Services Engineer, with respect to the Thames River Annual Report.

II YOUR COMMITTEE REPORTS:

3.

review and a new funding model.

ReThink London

2. That the Advisory Committee on the Environment (ACE) received a presentation from S. Galloway, Manager, Urban Design, with respect to ReThink London.

the attached presentation from R. Welker, Division Manager, Water Engineering

Division, with respect to the water, sanitary and storm drainage rate structure

That the Advisory Committee on the Environment (ACE) received

Water, Sanitary and Storm Drainage Rate Structure Review – A New Funding Model

Conservation Ontario Whitepaper: Watershed Management Futures for Ontario

3rd Report of the ACE

1st Report of the EEPAC

2nd Report of the TAC

1st Report of the TFAC

Southwest Area Plan

2371 Highbury Avenue North 4. (8) That the Advisory Committee on the Environment (ACE) reviewed and received a communication dated October 10, 2012, from the Upper Thames River Conservation Authority, with respect to the Conservation Ontario Whitepaper: Watershed Management Futures for Ontario; it being noted the ACE requested its Committee Secretary to invite P. Donnelly, Urban Watershed Program Manager, to a future meeting with respect to this matter.

5. That the Advisory Committee on the Environment (ACE) received and noted the following:

(a) (1) the 3rd Report of the Advisory Committee on the Environment from its meeting held on October 3, 2012;

(b) (2) the 2nd Report of the Environmental and Ecological Planning Advisory Committee from its meeting held on September 20, 2012;

(c) (3) the 2nd Report of the Transportation Advisory Committee from its meeting held on October 2, 2012;

(d) (4) the 1st Report of the Trees and Forests Advisory Committee from its meeting held on September 26, 2012;

(e) (5) a Notice dated September 24, 2012, from H. McNeely, Senior Planner, with respect to an application submitted by The Y Group Investments & Management Inc., relating to the Southwest Area Plan;

(f) (6) a Notice dated October 19, 2012, from M. Corby Planner, with respect to an application submitted by The Y Group Investments & Management Inc., relating to the property located at 2371 Highbury Avenue North; and,

Huron Street Watermain Crossing Municipal Class Environmental Assessment (g) (7) a Notice from J. Blancher, Senior Waterworks Technologist and M. Oxlade, Environmental Coordinator, Stantec Consulting Ltd., with respect to the Huron Street Watermain Crossing Municipal Class Environmental Assessment.

Next Meeting

6. That the Advisory Committee on the Environment will hold its next meeting on December 5, 2012.

The meeting adjourned at 2:47 p.m.

變 London

ISSUES

PARAMETER	MOE SURFACE WATER CRITERION	UPS	TREAM	DOWN (Komo	Average met Objective	
		2011	3 Year average	2011	3 Year average	
Suspended Solids		19	16	19	17	
BOD	4.0	2.0	2.4	2.4	2.5	Y
Dissolved Oxygen	4.0	9.6	10.3	9.3	9.8	Y
Phosphorous	0.03	0.10	0.08	0.13	0.11	N
Un-ionized Ammonia	0.019	0.003	0.002	0.003	0.002	Y
Nitrates**	2.9	5.1	4.7	5.3	5.0	N

邊 London

PARAMETER	Criterion	UPS	TREAM	DOWN (Komol	Average met Objective	
		2005	3 Year average	2005	3 Year average	
Total Coliforms * xx	1,000	7,600	6,000	7,800	8,800	N
E. Coli * xx	100	176	162	150	148	N
Iron	0.30	0.03	0.02	0.04	0.02	Y
Manganese	0.050	0.013	0.013	0.005	0.005	Y
Aluminum	0.100	0.070	0.066	0.061	0.061	Y
Cadmium	0.0002	L0.0002	L0.0002	L0.0002	L0.0002	Y
Chromium	0.100	L0.001	L0.001	L0.001	L0.001	Y
Copper	0.005	0.001	0.001	0.002	0.002	Y
Nickel	0.025	0.002	0.003	0.003	0.004	Y
Lead	0.025	L0.001	L0.001	L0.001	L0.001	Y
Zing	0.030	0.002	0.000		a second	

Average	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002				City of London Bypasses	, vindou	教育
		84,793	70,426	74,557	78,979	71,874	83,075	75,150	77,304	74,385	75,150	ML		Treated		Bypass	
194	4	375	47	158	219	24	201	225	375	285	225	ML		Raw Bypass		es	
65	6	94	38	60	70	36	99	74	106	66	32	#		0		SSL	and the second s
636	41	1,630	123	901	1,033	227	862	566	679	365	567	ML		Secondary By		JES	and
26	თ	31	17	22	38	19	33	26	47	40	11	#		pass		M	
		0.44%	0.07%	0.21%	0.28%	0.03%	0.24%	0.30%	0.48%	0.38%	0.30%		to Treated flow	% of raw bypasses			
		1,165	931	931	1,094	771	1,202	868	964	985	861	(mm)	yearly total	Rainfall			

Alignment of Goals, Objectives and Principles

- Financial stability and sustainability of our water and wastewater systems
- Protect our valued resources and promote conservation
- Promote economic development and jobs retention
- Enhance Customer Communication

Year	W	ater	Sanitary a	and Storm
	Current*	Proposed **	Current*	Proposed
2013	8.0%	8.0%	7.0%	7.0%
2014	8.0%	8.0%	7.0%	7.0%
2015	8.0%	7.0%	7.0%	7.0%
2016	7.0%	3.0%	7.0%	5.0%
2017	6.5%	3.0%	4.0%	3.0%
2018+	3.0%	3.0%	3.0%	3.0%
Annualized	6.7%	5.9%**	5.8%	5.3%

Largest impacts where we have inequities today

- Large institutional and commercial storm will go up – but water and sanitary will mitigate high volume users
- Lower volume ICI will be impacted by conservation rate – seeing some increases of \$50 per month – these include warehouses

Accommodations

- Medium density bulk metered multifamily – divide building consumption by number of units to establish block rate
- Storm area reduction based on Engineer's report with technical evaluation to reduce contributing area
- Irrigation Meters eliminate sanitary charge
- Consider a phase-in period for "transitional" customers of 3 years for the storm charge

Summary

- Achieves Sustainability sooner and at a lower cost to customers
- Promotes economic development
- Encourages conservation
- Ensures affordability of valued and life saving services
- Simpler and more consistent
- Customers treated fairly and equitably

Classification	Number	Total number of	Number
	between 300 to	customers	without
	420 m3 per		multiple
	year		accounts
Commercial	383	4526	383 (8%)
Industrial	9	192	7 (4%)
Institutional	13	514	9 (2%)
High Rise	12	717	12 (2%)
Total ICI	417	5949	411 (7%)
Residential	8638	103,722	8638 (8%)