Deep Geological Repository for Low and Intermediate Level Nuclear Waste

Bruce Nuclear Facility

Bruce Nuclear Facility: vulnerability

Western Waste Management Facility

Western Waste Management Facility

Western Waste Management Facility

Tritium in groundwater at WWMF

GRAPH 3.31 WWMF WSH 231 Tritium Concentration

US DoE Yucca Mt.

US DoE: WIPP Carlsbad NM.(2/3/12)

Waste Isolation Pilot Plant (Carlsbad NM)

BRUCE Deep Geological Repository

Deep Geological Repository

Geological Cross section

Notes: From Sykes et al. (2011).

Figure 5.15: Block-cut View Showing Subcrop of the Bedrock Units Beneath Quaternary
Drift Deposits for the Regional Modelling Domain

DGR Upper Section

DGR Lower section

Lake Huron Bathymetry

To be considered safe, a concept for managing nuclear fuel wastes must be judged, on balance, to:

Seaborn Criterion	DGR "Score"
1. demonstrate robustness in meeting appropriate regulatory requirements	А
2. be based on thorough and participatory scenario analyses;	B/C
3. use realistic data, modelling and natural analogues	B/B/C
4. incorporate sound science and good practices	B/C
5. demonstrate flexibility	С
6. demonstrate that implementation is feasible;	В
7. integrate peer review and international expertise	Α

To be considered acceptable, a concept for managing nuclear fuel wastes must:

Seaborn Criterion	DGR "Score"
1. have broad public support	С
2. be safe from both a technical and a social perspective	B/D
3. have been developed within a sound ethical and social assessment framework	D
4. have the support of Aboriginal people	B?
5. be selected after comparison with the risks, costs and benefits of other options;	D
6. be advanced by a stable and trustworthy proponent and overseen by a trustworthy regulator	С

Positive attributes of DGR

- Real and present danger of status quo
- Ethical responsibility: our power, our waste
- Very favourable hydro/geology
- Minimal transport
- Secure site
- Momentum- active debate and research

Negative attributes

- Incomplete review- bias
 - There are potential engineering problems
- Sanguine assumptions & non critical testing
 - (not worst case)
- Poor social science vision
 - (error & dystopia)
- Weak oversight (CNSC)
- Promotional advocacy [critical scrutiny]

Conclusions

- Imbalanced adversarial process
- Lack of independent oversight
- Winner takes all
- Trojan horse (mission creep)
 - Decommissioning
 - International trade
 - Spent fuel
- Absence of informed debate
- Rejection of DGR will postpone action